Emergent Management of Acute Ischemic Stroke

Michael J. Schneck, MD
Dept. of Neurology & Neurosurgery
Loyola University Medical Center
Stroke Incidence and Prevalence in the United States

- **Incidence**
 - 795,000 strokes/year in the US (new or recurrent)
 - 300,000 TIA/year in the US
 - 1 stroke every 45 seconds

- **Prevalence**
 - 4.7 million cases
 - Leading cause of disability
 - 2 million stroke survivors

- Estimated direct and indirect costs exceed $7 billion/year
 - Quoted cost per person ~$50,000 per year

- Incidence differs among ethnic populations, gender, and geography
- Risk increases strongly with age

Lloya Jones et al Heart Disease and Stroke Statistics 2010 Update
Assessment of Acute Stroke

Theobold Chartran, 19th Century
National Library of Medicine
Goals of the Work-Up

- Stabilize patient/reverse stroke
 - thrombolysis when appropriate
- Prevent peristroke complications
 - DVT, pneumonia, cerebral edema
- Determine location of stroke
- Define mechanism of stroke
- Secondary prevention (prevent recurrence)
Stroke Evaluation Targets For Potential Thrombolysis Candidates

NINDS Recommendations

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Time Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door to Door</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Access to neurological expertise</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Door to CT completion</td>
<td>25 minutes</td>
</tr>
<tr>
<td>Door to CT interpretation</td>
<td>45 minutes</td>
</tr>
<tr>
<td>Door to treatment</td>
<td>60 minutes</td>
</tr>
<tr>
<td>Door to monitored bed</td>
<td>3 hours</td>
</tr>
</tbody>
</table>
Time Is Brain: Effects of tPA vs Time

Odds Ratio for Favorable Outcome at 3 Mo

Minutes from Stroke Onset to Start of Treatment

Benefit for rt-PA

No benefit for rt-PA
NIH Stroke Scale

(see AHA website for training modules)

<table>
<thead>
<tr>
<th>Category</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consciousness</td>
<td>0-3</td>
</tr>
<tr>
<td>Commands</td>
<td>0-2</td>
</tr>
<tr>
<td>Visual fields</td>
<td>0-3</td>
</tr>
<tr>
<td>Arm motor (R)</td>
<td>0-4</td>
</tr>
<tr>
<td>Arm motor (L)</td>
<td>0-4</td>
</tr>
<tr>
<td>Limb ataxia</td>
<td>0-2</td>
</tr>
<tr>
<td>Language</td>
<td>0-3</td>
</tr>
<tr>
<td>Neglect</td>
<td>0-2</td>
</tr>
<tr>
<td>Orientation</td>
<td>0-2</td>
</tr>
<tr>
<td>Gaze limits</td>
<td>0-2</td>
</tr>
<tr>
<td>Facial paresis</td>
<td>0-3</td>
</tr>
<tr>
<td>Leg motor (R)</td>
<td>0-4</td>
</tr>
<tr>
<td>Leg motor (L)</td>
<td>0-4</td>
</tr>
<tr>
<td>Dysarthria</td>
<td>0-2</td>
</tr>
<tr>
<td>Sensory deficits</td>
<td>0-2</td>
</tr>
</tbody>
</table>
Transient ischemic attack (TIA):

Transient episode of neurological dysfunction caused by focal brain, spinal cord, or retinal ischemia, without acute infarction.

Patients with suspected TIA should rapidly undergo:

1. Neuroimaging evaluation within 24 hours of symptom onset
 - MRI, including DWI, is preferred
 - If MRI is not available, perform CT

2. Noninvasive imaging of the cervicocephalic vessels

3. Noninvasive testing of the intracranial vasculature to exclude the presence of intracranial stenosis

4. Evaluation as soon as possible after an event.

Short-Term Prognosis after Emergency Department Diagnosis of TIA

Outcome Events

- Stroke: 5.3% (Within 48 hr)
- Recurrent TIA: 12.7% (Within 90 days)
- CV event: 2.6%
- Death: 2.6%

ABCD² Score

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥60 years</td>
<td>1 point</td>
</tr>
<tr>
<td>Blood pressure ≥140/90 mm Hg</td>
<td>1 point</td>
</tr>
<tr>
<td>Clinical features [of TIA]</td>
<td>2 points for unilateral weakness
1 point for speech impairment without weakness</td>
</tr>
<tr>
<td>Duration [of TIA]</td>
<td>2 points for ≥60 minutes
1 point for 10-59 minutes</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1 point</td>
</tr>
</tbody>
</table>

Maximum score is 7. Score 6 or 7 = high risk.

Stroke Risk by ABCD² Score

Limits of the ABCD Score

- Prospective study of 117 patients
 - 26 classified as high risk
 - (stroke or death within 90 d).
 - Frequency of high risk increased with ABCD score
 - Of those who had an MRI 15/61 (25%) had positive DWI lesions.
 - Correlation with ABCD score was poor with between 10-36% of patients in the 0-4 categories having positive lesions.
 - for patients with score of 5: 13%
 - for patients with score of 6: 60%
 - p value of trend= 0.24

Cucchiara B Stroke 20006
Limits of the ABCD Score (2)

- Study in Calgary, Alberta, Canada
- 69 patients with TIA and 51 patients with minor stroke.
- Risk of new stroke at 90 days
 - 32.6% with DWI and vessel occlusion
 - 10.8% with DWI and no occlusion
 - 4.3% with no positive DWI lesions

Coutts SB et al Ann Neurol 2005
Advances in Radiologic Diagnosis

If there is no knowledge there is no understanding;
if there is no understanding there is no knowledge.

Pirkei Avot Chapter 3
1. Early changes with loss of sulci and edema on the right side
Left MCA Stroke by MRI

T2 weighted image of a left cortical infarct
Diffusion & Perfusion Weighted MR imaging

- Allows for early identification of ischemic changes.
 - Can show tissue at risk for infarction

- Measures early changes in blood flow and changes in water content

- Becoming more widespread but overall utility?
 - Immediate CT still mainstay of diagnosis
Evolution of infarct size over time by DWI (A,C, D)
B represents the related perfusion image.
From the UCLA group: The advantages of MRA and DWI in diagnosis of stroke
A large area of CT perfusion deficit as a result of new right cerebral ischemia.
Management
NINDS rt-PA Acute Stroke Study

- 30% more likely to have little or no deficit at 90 days
 - NNT: 1 stroke prevented for every 8 treated
 (a very strong ratio for drug therapies)
- Symptomatic ICH = 6.4% vs. 0.6% controls
 - Despite this, no overall increase in mortality with rt-PA
 and overall benefit factored in hemorrhagic complications!

NEJM 1995; 333: 1581-7
TPA in Clinical Practice

- Only 3%-4% of stroke patients receive tPA
 - mostly due to time delays
- In real world, results acheivable that are similar to NINDS trial
 - Rate of ICH: 4%-6%
- Risk of ICH increases with protocol violations
 - Time >3 hours
 - Poor blood pressure control
 - Use of ‘prohibited meds’
 - Wrong dose
 - 0.9 mg/kg
 - Maximum dose: 90 mg
 - Elevated blood sugar also increases risk
- Cleveland experience shows that staying with the protocol improves outcome.

Overall Benefits and Risks of IV tPA for Stroke

- **Benefit:** neurologically normal at 3 months
 - 55% relative increase
 - 12% *absolute increase*

- **Very robust effect:**
 - NNT for neurologically normal: 8
 - NNT for improvement on mRS: 3.1

- **Risk of symptomatic ICH** was 6.4%

- **The overall benefits** *include* the ICHs

- **Risk of ICH** can be reduced by closely following the tPA protocol

mRS, modified Rankin scale.
3-5 hour window

negative for the endpoints of modified Rankin Scores of (0,1) or (0,1, and 2)

Several other post-marketing studies have shown similar results to NINDS from 0-3 hours

– NOTE: Cleveland experience proves need to follow protocol

Large numbers of complications as a result of ‘protocol’ violations’
TPA 3 - 4.5 hours

- N=821: 418 to the alteplase group and 403 to the placebo group.
 - Median time for the administration of alteplase was 3 hours 59 minutes.
 - 0.9 mg per kilogram of body weight or placebo.
- The primary end point was disability at 90 days, dichotomized as a favorable outcome (a score of 0 or 1 vs 2-6 on mRS scale)
 - The secondary end point was a global outcome analysis of four neurologic and disability scores combined.
 - Safety end points included death, symptomatic intracranial hemorrhage, and other serious adverse events.
More patients had a favorable outcome with alteplase than with placebo (52.4% vs. 45.2%; odds ratio, 1.34; 95% confidence interval [CI], 1.02 to 1.76; P=0.04).

- In the global analysis, the outcome was also improved with alteplase as compared with placebo (odds ratio, 1.28; 95% CI, 1.00 to 1.65; P<0.05).

- The incidence of intracranial hemorrhage was higher with alteplase than with placebo (for any intracranial hemorrhage, 27.0% vs. 17.6%; P=0.001; for symptomatic intracranial hemorrhage, 2.4% vs. 0.2%; P=0.008).

- Mortality did not differ significantly between the alteplase and placebo groups (7.7% and 8.4%, respectively; P=0.68).
TPA 3-4.5 hours

Eligibility criteria same as 0-3 hour window plus the following additional exclusions:
- patients older than 80 years,
- all of those taking oral anticoagulants even with an international normalized ratio [INR] of \(\leq 1.7 \)
- those with a baseline National Institutes of Health Stroke Scale score > 25
- those with both a history of stroke and diabetes
Number-needed-to-treat (NNT) analysis
Benefit versus Harm

- In how many patients do we have to use tPA in order to benefit (or harm) one patient?

- Benefit defined as favorable outcome (0-1 on modified Rankin scale at 90 days criteria)
- Harm defined as symptomatic ICH

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Harm</th>
<th>Benefit/Harm Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NNTB)</td>
<td>(NNTH)</td>
<td></td>
</tr>
<tr>
<td>13 (8)</td>
<td>5.8 (17)</td>
<td>2.2 (14)</td>
</tr>
</tbody>
</table>

Per 100 Patients

<table>
<thead>
<tr>
<th>Time</th>
<th>Benefit</th>
<th>Harm</th>
<th>Benefit/Harm Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3 hours</td>
<td>13 (8)</td>
<td>5.8 (17)</td>
<td>2.2 (14)</td>
</tr>
<tr>
<td>3-4.5 hours (ECASS 3)</td>
<td>7.2 (14)</td>
<td>4.4 (23)</td>
<td>1.6 (23)</td>
</tr>
</tbody>
</table>

Hemorrhagic transformation of an ischemic stroke
Thrombolysis:

Other Options

- IV and IA (DRIP and SHIP)
- IV (2/3) - 0.6 mg/kg [15% bolus]
- IA (1/3) - 0.3 mg/kg [2 mg distal to “clot”;
 2 mg “intra-clot”
 9 mg/hr X 2 hrs; 22 mg max]
- IV GPIIb/IIIa receptor antagonists + IA thrombolysis
- Mechanical & pharmacologic thrombolysis
 - Snares, baskets, aspiration devices, balloons
PROACT (I and II)

- Prourokinase
- Proximal MCA occlusions
- 6 hour window
- recanalization 66% vs. 18% controls
- mRS 0,1, or 2 significantly greater than control!
 - 58% more likely to have no clinical deficit
- Despite this FDA did not approve

Furlan A et al Jama 1999
“PROs and CONs” of IA Thrombolysis

- Significant improvement for major strokes
 - (MCA and basilar territory)
- Window may be extended beyond 3 hours available for iv therapy
 - 6 (maybe 8) hours for MCA strokes; longer for basilar strokes
- Downside is need for a very specialized stroke team with neuro-interventional capabilities and time to assemble that team
Merci Retriever Device
Merci Trial

- 114 patients.
 - Prospective non-randomized single-arm study
 - Large vessel (ICA, MCA, VB, BA) strokes
 - Historical control used for comparison
 - Placebo arm of PROACT-II:
 - 27 percent mortality
MERCI 1+2 Protocol Overview

Inclusion criteria:
- Time window 3-8 hours
 - Includes also 0-3 hours if patient not TPA candidate
- NIHSS>9
- Occlusion of ICA, M1, BA, VA
- CT: hypodensity <1/3 MCA territory

Primary Endpoints:
- Successful revascularization in all treatable vessels
- Major device related complications

Secondary Endpoints:
- Neuro. Status at 30 and 90 days (NIHSS and mRS)
- Major adverse events at 30 days (death, new stroke, MI)
Merci Trial Results

- 47 percent event-free recanalization.
 - Versus 18% in PROACT-II
- 38 percent mortality
 - Versus 27% in PROACT-II placebo
 - Difference attributed to higher acuity in Merci Trial patients
 - Of 61 patients with recanalization: 25% death in 90 days
- Complications:
 - Device related adverse events 3.5%
 - 8 percent sx ICH
 - 2% in ‘control’ group

- FDA approval for this device provided under a humanitarian IDE exemption!
<table>
<thead>
<tr>
<th>Trial</th>
<th>Trial Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROACT-II</td>
<td>Randomized, IA pro-UK vs. IV heparin</td>
</tr>
<tr>
<td>IMS-I II</td>
<td>Registry, IV t-PA + IA t-PA</td>
</tr>
<tr>
<td>IMS-I II</td>
<td>Registry, IA thrombectomy, IA lytics allowed, IV disallowed</td>
</tr>
<tr>
<td>Multi MERCI</td>
<td>Registry, IA thrombectomy, IA & IV lytics allowed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recanalization</th>
<th>Outcome (mRS ≤ 2)</th>
<th>Mortality</th>
<th>Symptomatic ICH</th>
<th>Baseline NIHSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx</td>
<td>Cont</td>
<td>Rx</td>
<td>Cont</td>
<td>Rx</td>
</tr>
<tr>
<td>PROACT-II N=180</td>
<td>66%</td>
<td>18%</td>
<td>40%</td>
<td>25%</td>
</tr>
<tr>
<td>IMS-I N=80</td>
<td>56%</td>
<td>.</td>
<td>43%</td>
<td>16%</td>
</tr>
<tr>
<td>IMS-II N=73</td>
<td>58%</td>
<td>.</td>
<td>45%</td>
<td>16%</td>
</tr>
<tr>
<td>MERCI N=141</td>
<td>60%</td>
<td>48%</td>
<td>28%</td>
<td>44%</td>
</tr>
<tr>
<td>Multi MERCI N=164</td>
<td>68%</td>
<td>55%</td>
<td>36%</td>
<td>34%</td>
</tr>
</tbody>
</table>
An aspiration catheter, with a distal wire to keep the catheter clear, and a grasping device designed to remove harder thrombus if the aspiration device fails to recanalize the vessel.

Approved under the 510K regulations in January 2008 as "substantially equivalent" to another currently approved mechanical device, the Concentric Balloon Guide Catheter (Concentric Medical Inc) for the indication of revascularization of patients with acute ischemic stroke secondary to large vessel occlusive disease within 8 hours of symptom onset.
Penumbra Study: ISC Feb. 2008

- **Phase II study**
 - 125 patients at 24 international centers
 - Single arm trial
 - NIHSS >7
 - Sx onset <8 hours
 - TIMI 0 or 1
 - Not eligible or no response to iv TPA
 - **1º endpoints:** revascularization (TIMI 2 or 3) and procedural SAEs.

- Company designed and sponsored!
Revascularization (TIMI 2 or 3): 82 percent of patients with aspiration device only versus the 48.2% historical control (p < 0.0001),
- Adjunctive grasping device not approved as too few patients tested

3.2% procedural serious adverse events (SAE) rate versus the 7.1% historical control. There were 4 SAEs:
- Patient 1: balloon angioplasty with perforation of vessel and ICH/SAH,
- Patient 2: SAH due to wire
- Patient 3: ICH immediately following recanalization
Favorable outcome
- at 30 days: 4 point improvement NIHSS at discharge or 30 day mRS <3 in 41.6% patients
- At 90 days: 25% of patients had mRS <3.

At 24 hours, ICH 35/125 (28%) with 14/125 (11.2%) with NIHSS deterioration >3 points

Mortality: 26.4% at 30 days and 32.8% at 90 days
1. Early changes with loss of sulci and edema on the right side
Surgery for Acute Ischemic Stroke

- Emergent carotid endarterectomy and thrombectomy
 - limited utility
 - typically following acute post-CEA occlusions
 - intra-arterial snares, jets, lasers are being explored.

- Hemicraniectomy
 - To prevent herniation of the brain following massive stroke
 - a ‘salvage’ procedure
 - randomized trial underway
Heparin in Acute Cerebral Ischemia

- **DVT prophylaxis**
- **Progressing, stuttering, unstable ischemia**
- **High degree carotid stenosis**
- **Cardioembolic stroke (?? timing)**
- **Prosthetic valves**
- **Vertebro-basilar ischemia**
- **Acute partial stroke**

Anticoagulation for Acute Ischemic Stroke

- Urgent routine anticoagulation with goal of improving neurologic outcome or preventing early recurrence not recommended.
- Possible indications regarding immediate anticoagulation in specific patient groups unknown
 - Large-vessel atherothrombosis
 - from post hoc data of the TOAST trial maybe benefit in acute carotid artery territory stroke 2º to occlusion High risk of recurrent embolism
- Not recommended for moderate or severe stroke.
 - High risk of intracranial bleeding
- Contraindicated within 24 hours of tPA.
- NO BOLUS
 - goal is PTT 1.5-2.0 times control

Results of Anticoagulation: Meta-analysis

- No significant difference in 2-week mortality (8.5% in AC group vs 8.7% in controls)
- Total new strokes identical between 2 treatment groups: 4.1%
- No evidence of heterogeneity among various studies or agents

Blood Pressure in Ischemic Stroke

- Acute elevations of BP are common in stroke.
 - Seen in 85% of patients
 - Often declines spontaneously in first 24-48 hours

- Cerebral autoregulation is defective in most stroke patients.

- Acutely lowering BP can expand area of ischemia.
 - Supported by PET studies
 - Supported by clinical experience
 - Supported by ASA guidelines
Mean value and 95% CIs of infarct volume on days 4 to 7 by SBP (A) and DBP (B) levels on admission. Castillo: Stroke, Volume 35(2).February 2004.520-526
BP RX in Patients Eligible for Thrombolysis

• Before tPA treatment
 – Systolic >185 mm Hg or diastolic >110 mm Hg
 ▪ Labetalol or
 ▪ Nicardipine
 – If blood pressure does not decline and remains >185/110 mm Hg, do not administer tPA

• During and after tPA treatment: monitor blood pressure to keep underr
 180/1200
BP RX in Patients Not Eligible for Thrombolysis

- **Systolic <220 or diastolic < 120 mm Hg**
 - Observe and do not treat unless evidence of end organ failure
 - MI, acute renal failure, hypertensive encephalopathy

- **Systolic >220 or diastolic >120 mm Hg**
 - Labetalol 10-20 mg IV over 1-2 min (may repeat or double every 10 min, max 300 mg) or Nicardipine
 - Aim for 10%-15% reduction in blood pressure

- **Diastolic >140 mm HG**
 - Nitroprusside (or nicardipine/labetalol))
 - Aim for 10%-15% reduction in blood pressure
Stroke Systems of Care
“Efficacy versus Effectiveness”

Study is not the main thing but action.

Pirkei Avot
Chapter 1
Median ED Arrival Times
Based on Type of First Medical Contact

NINDS rt-PA Pilot Study. Barsan WG et al Stroke 1994
Impact of rt-PA Protocols

A Survey of North Carolina Hospitals

<table>
<thead>
<tr>
<th>ITEM</th>
<th>% with rt-PA vs. without</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Awareness Programs</td>
<td>41 vs 17</td>
<td>0.003</td>
</tr>
<tr>
<td>Stroke Teams</td>
<td>31 vs 8</td>
<td>0.001</td>
</tr>
<tr>
<td>Stroke care maps/algorithms</td>
<td>56 vs 17</td>
<td><0.001</td>
</tr>
<tr>
<td>Rapid stroke i.d. programs</td>
<td>33 vs 6</td>
<td><0.001</td>
</tr>
<tr>
<td>Stroke Units</td>
<td>33 vs 7</td>
<td><0.001</td>
</tr>
<tr>
<td>Neurologists</td>
<td>78 vs 33</td>
<td><0.001</td>
</tr>
</tbody>
</table>

54 of 125 hospitals in 46 of 100 counties with 74% of state pop. had rt-PA protocols

Goldstein LB et al Stroke 1998
Benefits of a Stroke Team in Acute Treatment

Bratina P et al Stroke 1995
Outcomes for Stroke Units

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased mortality:</td>
<td>0.83</td>
</tr>
<tr>
<td>Death or institutional care:</td>
<td>0.76</td>
</tr>
<tr>
<td>Death or dependency</td>
<td>0.75</td>
</tr>
<tr>
<td>Decrease in Length of Stay</td>
<td>2-11 days</td>
</tr>
</tbody>
</table>

Cochrane Database 1999
Outcomes for Stroke Units

Death or Institutional Care

<table>
<thead>
<tr>
<th>Category</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>0.66</td>
</tr>
<tr>
<td>Women</td>
<td>0.77</td>
</tr>
<tr>
<td><75 yrs</td>
<td>0.77</td>
</tr>
<tr>
<td>>75 yrs</td>
<td>0.71</td>
</tr>
<tr>
<td>Mild stroke</td>
<td>0.84</td>
</tr>
<tr>
<td>Moderate stroke</td>
<td>0.73</td>
</tr>
<tr>
<td>Severe stroke</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Cochrane Database 1999
Stroke Centers: The three Levels of Care

- **Emergent stroke-ready hospitals**
 - Mainly for rural areas
 - Stabilize stroke patients
 - Use tPA then transfer out:
 - “drip and ship”

- **Primary stroke centers**
 - Provide initial, acute care
 - Provide TPA and other acute therapies in a safe and efficient manner
 - Admit patients to stroke unit

- **Comprehensive stroke centers**
 - Care for complex patients (large IS, ICH, SAH)
 - Interventional and other specialized treatments (coils, stents, etc)
 - Team approach with stroke specialists, neurointensivists, endovascular specialists and neurosurgeons

ICH, intracerebral hemorrhage; IS, ischemic stroke; SAH, subarachnoid hemorrhage.
Emergent Stroke-Ready Hospital (ESRH) and Primary Stroke Centers:

- Stroke team
- Rapid head CT
- Rapid laboratory testing
- Ability to give tPA and other acute therapies
- Various disease performance measures

Primary stroke center also provides:
- Stroke unit
- Neurosurgery within 2 hours

ESRH also provides:
- Stroke protocols
- ED/EMS support
- Staff education
- Administrative support

National Institute of Neurological Disorders and Stroke.
Primary Stroke Centers

- Stroke teams
- Stroke unit(s)
- Written caremaps and protocols
- Emergency medical services
- Emergency department
- Availability of neurosurgical services

- Support of hospital administration
- Neuroimaging (CT/MR/etc)
- Laboratory services
- Outcome/quality assurance and improvement processes
- Continuing medical education

Current Status of Stroke Center Certification: Primary Stroke Centers (PSCs)

- About 600 PSCs certified by The Joint Commission (TJC)
- About 250 PSCs certified by state-based organizations (NY, MA, FL)
- Many hospitals now going through recertification process
- New points of emphasis by TJC
 - Dysphagia screening and documentation
 - tPA administration to eligible patients
 - Nursing knowledge of the patient care plan and protocols
- Federal government (CMS, NQF) will begin looking at postdischarge outcomes for all patients
BAC Update to PSC Recommendations

- Stroke unit with telemetry
- Stroke team response (in 15 minutes)
- MRI with diffusion for hospitalized patients and CTA or MRA
- Cardiac imaging
- Document why eligible patients were not given tPA
- Early rehabilitation
- National external certification

BAC, Brain Attack Coalition; PSC, primary stroke center.
Joint Commission Standardized Performance Measures for Primary Stroke Centers

- Venous thromboembolism prophylaxis
- Discharged on antithrombotic therapy
- Anticoagulation therapy for atrial fibrillation/flutter
- Thrombolytic therapy
- Antithrombotic therapy by end of hospital day 2
- Discharged on statin medication
- **Dysphagia screening***
- Stroke education
- **Smoking cessation/advice/counseling***
- Assessed for rehabilitation

* Will be retired in 2010.

http://manual.jointcommission.org/bin/view/Manual/Questions/UserQuestionId03Stk100036.
Telemedicine and Stroke

- Video links are reasonable for performing an exam with inter-rater reliability comparable to face to face exam
 - NIHSS can be done remotely by experienced stroke specialists

- Teleradiology is also a useful adjunct in acute stroke.

- It is recommended that stroke specialists using telemedicine provide opinion for/against TPA when on-site expertise not immediately available.
Early Management of Acute Stroke
Summary Review

- Evaluate candidacy for thrombolytics
- CT: need to exclude ICH
- Early use of antiplatelet agents if not TPA candidate
- Early diagnostic studies
- ? Need for anticoagulation
- Consider NPO status and need for swallowing evaluation
Early Management of Acute Stroke

Summary Review

- Monitored bed (large strokes may need ICU bed for management of ICP)
- 0.9% NS only!
- Avoid (and treat) hypotension
- Avoid aggressive treatment of hypertension unless high risk.
 - If necessary, use an easily titratable agent such as i.v. labetalol, hydralazine, or nitroprusside
 - Except in thrombolysis cases, there is no absolute upper limit to the blood pressure
 - AHA guidelines suggest no rx unless SBP >220
Early Management of Acute Stroke

Summary Review

- Early PT/OT, Speech therapy, Rehab
- Aspiration precautions/consider NPO/swallow
- DVT prophylaxis
- Skin care
- Euglycemia
- Normothermia
Conclusions

- >80 percent of all stroke is ischemic (atherothrombotic or embolic) in etiology
- Acute recanalization is imperative
 - Intravenous TPA is the preferred treatment strategy
 - Must be given within 3 hours of symptom onset with strict criteria applied for patient eligibility
 - Can be given up to 4.5 hours in selected patients
 - Intra-arterial thrombolysis (pharmacologic and/or mechanical is an option for patients with large strokes or who are outside the iv TPA window
- Despite above, stabilization for ALL stroke patients is indicated
 - Avoid medical complications
 - Don’t overtreat BP
 - DX and RX must be expedited
The day is short, the work is great, the workers are lazy, the reward is great, and the Master of the house presses.

Pirkei Avot Chapter 2
The End